A Hybrid Radial Basis Function-Pseudospectral Method for Thermal Convection in a 3-D Spherical Shell
نویسندگان
چکیده
A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral (PS) methods in a “2+1” approach is presented for numerically simulating thermal convection in a 3D spherical shell. This is the first study to apply RBFs to a full 3D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be “scattered” over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth’s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 · 10 and 10. Results from a Ra = 10 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of Matlab and run on a single workstation. We find that our method is very competitive with those currently used in the literature. Accepted for publication in Geochem. Geophys. Geosyst., 2010 Corresponding author; [email protected].
منابع مشابه
The Effect of Temperature Dependency on the Thermo-Electro-Elastic Analysis of Functionally Graded Piezoelectric Spherical Shell
Results of electro-thermo-elastic analysis of a functionally graded thick-walled spherical shell made of temperature dependent materials are presented in this article. All material properties are assumed temperature-dependent and also are graded along the thickness direction based on power function. Temperature dependency is accounted for all material properties including, thermal, mechanical a...
متن کاملGeophysical Modeling on the Sphere with Radial Basis Functions
Modeling data on the sphere is fundamental to many problems in the geosciences. Classical approaches to these problems are based on expansions of spherical harmonics and/or approximations on latitude/longitude based grids. The former are quite algorithmically complex, while the latter suffer from the notorious pole problem. Additionally, neither of the methods can be easily generalized to other...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملElasticity Solution Approach for Functionally Graded Spherical Shell with Piezoelectric Properties
Based on elasticity approach, 1D analytical method is adopted in radial direction to analyze spherical shell made of FGPM. The mechanical properties are regulated by volume fraction as a function of radial coordinate. Loading can be internal and external pressures, or electric field. All mechanical and piezoelectric properties except the Poisson’s ratio are assumed to be power functions of radi...
متن کاملA benchmark study on mantle convection in a 3-D spherical shell using CitcomS
[1] As high-performance computing facilities and sophisticated modeling software become available, modeling mantle convection in a three-dimensional (3-D) spherical shell geometry with realistic physical parameters and processes becomes increasingly feasible. However, there is still a lack of comprehensive benchmark studies for 3-D spherical mantle convection. Here we present benchmark and test...
متن کامل